网站导航   4000-006-150  
小站教育
新托福口语高频话题范文
学生选择在小站备考:30天 526285名,今日申请3868人    备考咨询 >>

官方真题Official3托福听力Lecture4文本+真题+答案解析

2018年01月10日17:09 来源:小站整理
参与(0) 阅读(17487)
摘要:官方真题Official托福模考软件是目前市面上最好用的托福备考资料了,托福考生一般都会拿官方真题Official来进行托福考试的练习。这里小编将为大家整理了完整理了官方真题Official3托福听力Lecture4文本+真题+答案解析,帮助大家更好的进行托福听力备考

现在大家在进行托福备考时官方真题Official托福模考软件相信是大家用的最多的工具了,对于托福成绩的提升是非常有帮助的。托福听力可以说是整个托福考试当中比较重要的一个部分,如何利用现有资料官方真题Official模考软件来提升大家的托福成绩呢?今天小编在这里整理了官方真题Official3托福听力Lecture4文本+题目+答案解析来分享给大家,希望对大家托福听力备考有帮助。

官方真题Official3托福听力Lecture4文本+真题+答案解析图1

官方真题Official3托福模考软件配套资料汇总→→点击进入

官方真题Official3托福听力Lecture4原文文本

Spectroscopy

Professor: Now astronomy didn’t really bloom into the science it is today until the development of spectroscopy. Spectroscopy is basically the study of spectra and spectral lines of light, and specifically for us, the light from stars. It makes it possible to analyze the light emitted from stars. When you analyze this light, you can figure out their distance from the earth, and identify what they are made of, determine their chemical composition.

Before we get into that though, it’s probably a good thing to back up a bit. You all know how when you take a crystal prism and pass a beam of sunlight through it, you get a spectrum, which looks like a continuous band of rainbow colors. The light that we see with our human eyes as a band of rainbow color falls in a range of what’s called visible light. And visible light spectroscopy is probably the most important kind of spectroscopy. Anyone want to take a stab at the scientific term for visible light? And I’m sure all of you know this because you all did the reading for today.

Student: Optical radiation. But I thought being exposed to radiation is dangerous.

Professor: Yes, and no. If you are talking about radiation, like in the element Uranium, yeah, that’s dangerous. But radiation as a general term actually refers to anything that spreads away from its source. So optical radiation is just visible light energy spreading out.

OK, so we’ve got a spectrum of a beam of sunlight and it looks like the colors bleed into each other. There are no interruptions, just a band flowing from violet to green, to yellow, to… you get the idea. Well, what happens if the sunlight’s spectrum is magnified? Maybe you all didn’t do the reading. Well, here’s what you’d see. I want you to know this that this spectrum is interrupted by dark lines called spectral lines.

If you really magnify the spectrum of the sunlight, you could identify more than 100,000 of them. They may look like kind of randomly placed, but they actually form many distinct patterns. And if you were looking at the spectrum of some other star, the colors would be the same. But the spectral lines would break it up at different places, making different patterns. Each pattern stands for a distinct chemical element, and so different sets or patterns of spectral lines mean that the star has a different chemical composition.

Student: So how do we know which spectral patterns match up with which elements?

Professor: Well, a kind of spectroscopic library of elements was compiled using flame tests. A known element, say a piece of iron for example, is heated in a pure gas flame. The iron eventually heats to the point that it radiates light. This light is passed through a prism, which breaks it up into a spectrum. And a unique pattern, kind of like a chemical fingerprint of spectral lines for that element appears.

This process was repeated over and over again for many different elements, so we can figure out the chemical makeup of another star by comparing the spectral pattern it has to the pattern of the elements in the library. Oh, an interesting story about how one of the elements was discovered through spectroscopy. There was a pretty extensive library of spectral line patterns of elements even by the 1860s.

A British astronomer was analyzing a spectrograph of sunlight, and he noticed a particular pattern of spectral lines that didn’t match anything in the library. So he put two and two together, and decided there was an element in the sun that hadn’t been discovered here on the earth yet. Any guesses about what that element is? It actually turned out to be pretty common and I’m sure all of you know it. OK, let’s try something else. Any of you happened to be familiar with the Greek word for “sun” by chance?

Student: Something like “Helius” or something like that. Oh it must be “Helium”. So you are saying that Helium was discovered on the sun first.

Professor: Yes, and this is a good example of how important spectroscopy is in astronomy.

查看官方真题Official3托福听力Lecture4的题目请进入下一页→→→

更多最新,最in的托福资讯,关注公众号:小站托福(ID:xiaozhantuofu2015)
特别申明:本文内容来源网络,版权归原作者所有,如有侵权请立即与我们联系contactus@zhan.com,我们将及时处理。

托福备考资料免费领取

免费领取
看完仍有疑问?想要更详细的答案?
备考问题一键咨询提分方案
获取专业解答

相关文章

官方真题Official4托福综合写作阅读原文+听力原文+... 官方真题Official48托福听力Lecture4原文+... 托福阅读真题练习:美国移民的文本+真题+答案 托福备考如何挤出时间学习?学业工作繁忙考生必备托福攻略分享
小站教育托福官方群

群号:857201332

「扫二维码 加入群聊」
加入
托福关键词
版权申明| 隐私保护| 意见反馈| 联系我们| 关于我们| 网站地图| 最新资讯
© 2011-2024 ZHAN.com All Rights Reserved. 沪ICP备13042692号-23 举报电话:4000-006-150
沪公网安备 31010602002658号
增值电信业务经营许可证:沪B2-20180682